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Abstract—In  this study, we propose to address the issue the intrinsic constraints of the device which is actuallyngp
of image denoising by means of a GPU-based filter, able to to run those algorithms. Consequently, this often resuits i
achieve high-speed processing by taking advantage of themtel ;53| options and even apparently sub-optimal solytions

computation capabilities of modern GPUs. Our approach is baed - . . .
on the level sets theory first introduced by [1] in 1975 but litle but the considerable speed benefits obtained would possibly

implemented because of its high computation costs. What we Make it at least a good compromise or even the only current
actually do is try to guess the best isoline shapes inside tmoisy way to real-time high-definition image processing.

image. At first, our method involved the polyline modelling d

isolines; then we found an optimization heuristics which vey

closely fits the capabilities of GPUs. So far, though our propsed [I. CONTRIBUTION

hybrid PI-PD filter has not achieved the best denoising levsl it . .
is nonetheless able to process a 512x512 image in about 11 ms. AS €arly as 1975 [1], it was found that, under the conditions

mentioned in section V, an image can be decomposed into a
set of level lines. Accordingly, real-life images fulfillerabove
conditions and since then, with the increase of computing
|. INTRODUCTION capabilities, researchers have succeded in implementicly s
Denoising has been a much studied research issue silexel-lines based algorithms as in [9] and [10]. A few years
electronic transmission was first used. The wide range @§o, in [11], authors proposed an original method whichikign
applications that involve denoising makes it uneasy to psep icantly reduces speckle noise inside coherent imagesy tisin
a universal filtering method. Among them, digital imagéevel lines in the image to constrain the minimization psxe
processing is a major field of interest as the number of digithhose level lines are actualigo-gray-levellines, which are
devices able to take pictures or make movies is growing fagtlled isolines In [11], isolines consist in neighborhoods of
and shooting is rarely done in optimal conditions. Morepvepolyline shapes determined by maximum likelihood optimiza
the increase in pixel density of the CCD or CMOS sensotion. This method proved not only to bring good enhancement
used to measure light intensity leads to higher noise effetiut also to preserve edges between regions. Neverthetess, t
and imposes high output flow rates to the various processié@sts in computation time, though not prohibitive, did not
algorithms. allow real-time image processing; as an example, the asithor
In addition, it is difficult to quantify the quality of an imag of [11] managed to process an almost 2Mpixel image within
processing algorithm, as visual perception is subject gh hia minute on an old PIlI-1GHz.
variation from one human to another. So far, the advent of Our work started by designing a set of GPU implemen-
GPUs has brought high speedups to a lot of algorithms, atadions with various optimization heuristics, in order todfi
many researchers and developpers have successfully adiressit which tracks could be followed towards minimizing loss
the issue of implementing existing algorithms on such devic in quality and preserve admissible execution times. Those
For example in [2], [3] and [4], authors managed to desigrigorithms have been tested with reference images takem fro
quite fast median filters. Bilateral filtering has also beeao-s [12] for which various processing results have been puétish
cessfully proposed in [5]. Still, most high quality algbits, Some of the more interesting ones are listed and compared in
like NL-means [6] or BM3D [7] make use of non-local[13]. Statistical observations (to be detailed below) made
similarities and/or frequency domain transforms. Howgvehe output images produced by the method proposed in [11],
speedups achieved by their current GPU implementatiofe] us to propose a very fast and simple parallel denoising
though quite sigificant (as shown for example with NL-mearnmsethod which gives good results in terms of average gray-
in [8]), do not come near those achieved by local methotissel error, but also avoids the blurring of edges.
such as gaussian, median or neighborhood filters, as theyn the basis of the BM3D timings listed in [7] and with
have not originally been designed against GPU architectuoair own measurements, our proposed GPU-based filter runs
In order to fully benefit from the capabilities of GPUs, it isaround 350 times faster and thus is able to process high
important that the approach to designing algorithms be matefinition images at over 16fps. It also achieves good derwis
hardware-oriented, keeping in mind, from the very begigninquality.
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[. PLAN our goal is to find, for each single pixel of a noisy image, the

In the following, section IV briefly focuses on recent NvididSline it belongs to. The generalized likelihood criteri@L)
GPU characteristics. Section V will introduce the theory ariS Used to select the best isoline among all the consideres, on
notations used to define isolines. Then, in section VI, wdl of which must have the same number of pixels in order to
will describe the two isoline based models that led to tHe€ compared.
final hybrid model, while section VII details the parallel ) .
implementation of the proposed algorithm. Finally, we prées A. Fixed-length isolines
our results in section VIII before drawing our conclusionsia  For each pixel(i, j) of the corrupted image, we look for

outlining our future works in section IX. the gray level of the isoline it belongs to, inside a rectdagu
window w centered oni, 7). Insidew, let S™ be the isoline
IV. NVIDIA'S GPUARCHITECTURE part which the center pixel belongs t6" is a set ofn pixel

GPUs are multi-core, multi-threaded processors, optichizR0S1ONS(ig, jq) (¢ € [O;n[);l . .
for highly parallel computation. Their design focuses on he gray IeyeISz along 5™ follow a gaussian prol_)ab!llty
SIMT model (Single Instruction Multiple Threads) that de- ensity function whose p_argmete@n (mean valu_e of |s_oI|ne
votes more transistors to data processing rather than d:ﬂg[t) andy (standard deviation brought by gaussian noise ) are
caching and flow control (see [14] for more details). For exaankmwn' ) o
ple, a C2070 card features 6 GBytes global memory and a t?&lt S" be ‘?'ef'”ed byw = 5™ U 5. _
of 448 cores bundled in several Streaming Multiprocess g each pixel, the mean val_ua%- of gray levelsz over 5™
(SM). An amount of shared memory, much faster than gIob%rIe unknown and supposed_lndependant '
memory, is avalaible on each SM (up to 48 KB for a C20xket Z be the gray levels of pixels in and{4; 1z the mean
card) values of pixels inS™. The likelihood is given by:

Writing efficient code for such architectures is not obvious P[Z)S", psn, {pij}zm, 0]
as re-serialization must be avoided as much as possible, T . _— . —_
code design requires one pays attention to a nurFr)1ber of poitr‘léﬁlgéir;nzzparatlng contributions from regiofis and 57, it
among which: '
« the CUDA model organizes threads by a) thread bIocksH P[z(i,j)|psn, o). H P [2(i, ) {pij}gw- 0] (1)
in which synchronization is possible, b) a grid of blocksi.j)es™ (i,§)ES™
with no possible synchronization between them. The goal is then to estimate the value of the above exprgssion
« there is no way to know how blocks are scheduled during order to find the boundaries 6f* that maximize expression
one single kernel execution. (1).
- data must be keptin GPU memory, to reduce the overheggt us consider that, 0", the values:(i, ;) are the likelihood

generated by copying between CPU and GPU. estimationsyz;; for p;;. The second term of expression (1)
« the total amount of threads running the same computatigBcomes:

must be as large as possible.

« the number of execution branches inside one block should H_P [Z(i’j” (st s U} =1 @
be as small as possible. (i,5)eS™
« global memory accesses should be coaleséenthem- which leads to the generalized likelihood expression:
ory accesses done by physically parallel threads (2 x 16 .
at a time) must be consecutive and contained in a 128 ’ l;IS Pz, j)lpse, 0] (3)
7;,] 6 n

Bytes range. - ) _

« shared memory is organized in 32x32 bit-wide banks. TdS We know the probability density function oft", (3) can
avoid bank conflicts, each parallel thread (2 x 16 at en be developped as
time) must access a different bank.

_ (2G5 —pgn)?

1
- -2
All the above characteristics always make designing effi- H ,/—%Uze ’ )
. .. . (i,7)€8™
cient GPU code all the more constraining as non-suited code o _ _
would probably run even slower on GPU than on CPU. The log-likelihood is then given by:
n n n
——log (27) — =log (%) — = (5)
V. ISOLINES 2 (2m) 2 (=) 2

In the following, let! be the reference noiseless image (ad2Side Which the vector of paramete(iss-, o) is determined

suming we have oneJ! the noisy acquired image corrupted byPY Maximum likelihood estimation

Independent and Identically Distributed (IID) additive iteh o = 1 Z 24, §)

gaussian noise of zero mean value and standard deviation (ipesn ’

Let I be the denoised image. Each pixellé6fof coordinates — 1 < o

(i,7) has its own gray levet(i, 7). 0% = > (2(,4) - fisn)
As introduced above and since most common images are (i.j)esn

continuous and contain few edges, they can be decompo3é@ selection of the best isoline is done by searching which
into a set of constant gray level lines calleblines Then one maximizes the expression of equation (5).



___________ P The difference between (6) and (7) leads to the expression
e of GLRT(S"+7, 5™, 87, Thnas):

SSCESNSS

£ Tz = (n+ p): |log (75°) = tog (52°)] ®)

The decision to validate lengthening frosi® to S™*?
depends whetheGGLRT(S™"TP, S™ SP T,...) is higher or
lower than0. ValueT,,,. is the GLRT threshold.

VI. | SOLINE MODELS

The most obvious model considers isolines as polylines.
Each isoline can then be curved by allowing a direction ckang

Fig. 1. Determination and lengthening of an isoline: Theygevel z of at the end of each segment; we shall call such isol'[miy-
each pixel is seen as an elevation valgé. is then pixel length isoline for isolines

pixel of coordinates(s, j). The elongation ofS™ by SP (p pixel length) is . L Lo
submitted to the GLRT condition (see eq. (8)). In order to keep the number of candidate isolines within

reasonable range, we chose to build them by combinating
segments described by simple pre-computed patterns. Each

B. Lengthenable isolines pattern p; ; describes a segment of lengthand direction

Searching for larger isolines should lead to better filgrind- For one given/ value, all p, 4 patterns are grouped into
as a larger number of pixels would be involved. Howeve® matrix denoted”. Figure 8 shows an example of such a
processing all possible isolines starting from each pixaily Pattern matrix forl = 5.
be too costly in computing time, even in the case of a small To fit the GPU-specific architecture, we define regularly
GPU-processed 512x512 pixel image. Therefore, we chdditributedD primary directions ) = 32 in our examples).
to build large isolines inside an iterative process inatgda
mandatory validation stage between (_each Iengtheningi'ﬂera A. Poly-isolines with limited deviation angle (PI-LD)
so as to reduce the number of pixel combinations to be ) ) )
examined and keep the estimation of deviatiorwithin a At one stage we implemented an algorithm parsing the tree
satisfactory range of values. of all possible polylme configurations, but the processvptb

Let S” be a previously selected isoline part aé con- far too slow regarding our goal, even on GPU, because of
nected toS™ in such a way thatS”? could be seen as anthe amount of memory involved (and consequent memory
addition to.S™ so as to define a possible valid isolis&+?. acqesses) and_ t_)ecau_se of the necessary reduction stage for
Figure 1 illustrates this situation with a very simple exdenp‘Which GPU efficiency is not maximum. So we focused on a
image. In this figure, the gray level of each pixel is used ss jfariant inspired by [11] in which the selected direction loé t
corresponding height:{ in order to visualize isolines easily. "€Xt Ségment depends on the whole of the previously built and
Some of the orthogonal isoline projections have been drayglidated poly-isoline. _
in dotted line in the(f, ;) plane. Both labeled part§? and Let us consider a poly-isolin8™ under construction, start-

S™ are represented in th@, ;) plane and in the 3D associated"d from pixel (i, j) and made ofi validated segments
plot. sk (k € [1;K]) of length i, each of them having its own

In order to decide whethe§™? can be considered asdirection dx. The coordinates of the ending pixel of each
an actual isoline, we compare the log-likelihood of botR€gments; are denotediy, jx). Both of the following sums

hypothesis below by using GLRT (Generalized Likelihood n B .
Ratio Test): C=(2(57) = .ZSHZ(Z’]) ®)
First, assuming thas™*? is an isoline, the gray levels of ()€ )
its pixels share the same mean vajug . According to (5), and Cy2 (Z(S™) = > z(i,j) (10)
its log-likelihood is (i,§)€S™
(n+p) (n+p) 9 have been obtained during the previous lengthening steps.
—— (og (2m) +1) — ———log (01 ) ®) Lt us examine now how to decide wether to add a new

wherea is the estimation of the standard deviation algiy  S€9ment taS™ or to stop the lenghtening process. The main

Second, considering” and .S as two separate isoline partdde@ is to apply each patteyn , to the ending pixeliy, jr),
connected together, the gray levels of their pixels have e the condition that its direction is contained within the

different mean valueg.,, and y,. The log-likelihood is the limits of maximum deviationAd,,,. Maximum deviation
sum of both log-likelihoods, given by Ad,q. prevents poly-isolines from beeing of circular shape
(or backward-oriented) which would possibly generate teypp

_(n+p) (log (271) + 1) — Zlog (552) — Py (552) (7) Mentary artefacts in the output image. Another of its besiefit
2 2 2 is to reduce the number of combinations to be evaluated.
wherea; is the estimation of the standard deviation aldtig For each allowed pattern, GLRT is performed in order to
and SP. decide if the corresponding segment could likely be added to



the end of the poly-isolin&™. If none is validated by GLRT, kernel execution, which does not fit GPU architecture well

the poly-isolineS™ is stopped.

and leads to execution times that we hoped would be more

If at least one segment has been accepted by GLRT, ihgressive.
one that leads to the maximum likelihood (ML) value of Within the PI-LD model, at each pixél, j), as no selection
the lengthened poly-isolin€™*! is selected and integratedis done at the first stage) poly-isolines are computed and

to S" ! assk .

kept as candidate though, obviously, only one follows the

In order to avoid critical situations where the first seldcteactual isoline at(i, j). So, if we assume we can achieve a
segment would not share the primary direction of the actualbust determination of the direction at any given pixel of
poly-isoline, no selection is performed on the level of ththis isoline, it becomes unnecessary to perform the selecti
first segment;D poly-isolines are kept and submitted to thet each lenghtening step. Thus, at each pikel), only
lengthening process. To ensure isotropy, each of them shatee first segment has to be determined in order to obtain
the direction of one patterp, 4 (d € [0; D]).

Eventually, the poly-isoline with the maximum likelihoodreduction of the work complexity: the above PI-LD model
value is selected among the longest ones.

Figure 2 illustrates one stage of the lengthening procets wpixel position, while only D.K evaluations are needed in
the example of a two-segment poly-isoline at the beginning the second case. For example, with a maximumkot= 5

stage (=5 and Ad, 4 = 2).

Y7

(i,9)
(a) Isoline with two validated
segmentss; and so.

(i, 5)

(c) Second evaluated segment,

corresponding to patterps ;.

(42, 52)
(i,9)
(e) Fourth evaluated segment,
corresponding to patterps 3.

(b) First evaluated segment,

corresponding to patterps o.

d3maz

o adz=d

= d3min

(i,5)

(d) Third evaluated segment,

corresponding to patterps 2.

- d3mnz

(i2, J2)
(,9)
(f) Fifth evaluated segment,
corresponding to patterps 4.

the local direction of the isoline. This leads to an importan

K-1

needs to evaluated. (2.Agpmaz + 1) segments at each

segments and a maximum deviation &f;,,,.. = 2, the PI-
LD needs to evaluate up to 20000 segments per pixel where
only 160 should be enough.

On the basis of these observations, we propose a new model
that we shall call PI-PD, that completely separates the vali
dation stages performed in the PI-LD model implementation
mentioned above:

A first computation stage selects the best first segment
starting at each pixe{i, j) of the input image. Its direction
index di(i,7) is then stored in a reference matrix denoted
Io; sumsC, and C,» alongsi(i,j) are also computed and
stored in a dedicated matrik;. It can be noticed that this
selection method of; segments is a degraded version of PI-
LD constrained byK = 1.

A second stage manages the now independant lengthening
process. For one given state of a poly-isoline where the last
added segment has been, the pattern whose direction index
is given byd = Ig(ik,jk) defines the only segment to be
evaluated. Both corresponding sutiisandC,» are read from
matrix Is; and used in GLRT evaluation. The last point is to
prevent poly-isolines from turning back.

Figure 3 details this process, starting from the same Initia
state as in figure 2 with the noticeable difference that no
deviation limit is needed.

Thus, as introduced above, work complexity is considerably

Fig. 2. Example of lengthening process starting with a tegesent poly- reduced, as each pattern is only applied once at one given

isoline ( = 5, Admasz = 2). The initial situation is shown in 2a, while 2b to ixel (i.4). and associated values are computed only once:
2f represent the successive candidate segments. Thdaliraudex of the last P (i, 7). P Y !

validated segment ig; = 2 (2a). It implies that direction indexes allowed for they are re-used e\(er}_/ time one p0|y'i_30"ne,5 segme_nt 3“?'3
the third segment range frody — Admaz = 0to d2 + Admaz = 4 (2bto  pixel (¢, ). Also, this fits GPU constraints better, as it avoids

2f). The lengthening of the poly-isoline is accepted if aisieone segment has mltiple branches during kernel execution. It remains that

a positive GLRT. If there are several, the one which minimigee standard - I . . Sy

deviation of the whole poly-isoline is selected. the building of poly-isolines is done without global liketiod
optimization.

Eventually, the model has been improved by adding to it
the ability to thicken poly-isolines from one pixel up to ¢ler
which allows to achieve higher PSNR values by increasing the

Though much faster, the PI-LD-based filter may be comumber of pixels of poly-isolines in addition to the lengtirey
sidered a bit weak compared &iate-of-the-artfilters like process. This may apply to large images which do not contain
BM3D family algorithms [7]. Furthermore, we saw that thismall relevant details, as it may blur small significant deta
way of building poly-isolines requires the alternate use afr objects present in the noisy image. Still, this featur&esa
two different types of validation at each lengthening stagPl-PD more versatile than our reference BM3D, which has
GLRT and maximum likelihood minimization. In order to beprohibitive computation times when processing large irsage
performed, each of them generates numerous branches du(mgr 5 minutes for a 4096x4096 pixel image) and thus should

B. Poly-isolines with precomputed directions (PI-PD)



require a slicing stage prior to processing them, causingeso
overhead.
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(a) Reference image

}‘ }\

£ -1 3y [
(12, 42) (42, 32) *dy

(i,9) (i:9)
@ Poly-isoline (b) Next direction is read from element
with two validated (2, j2) of Ig.

segments.
p ' ~ N
i (b) Image corrupted by random  (c) Image corrupted by random
ﬁ drawingn°1 drawing n°2
tHH
S IEEElEEEND EEZEEN=SENE
N 1 NIEEEEEEEEN -EEEEEEEEEES
% o . NNZ=ENSNZESE  -EEEESER=ENIN
MEEIEEENEE=A ZFEEEEFENNSE
%) 5 5}
G,5) EEEEEEEEEEN EEEEEEEEEEE
(c) Patternp, 4, is then applied at  (d) If accepted by GLRT, AEEEEEEEEEE ".._-'.__.
(i2,42) and GLRT is performed. segmentsz is added to ;========== ;==E=E=EEE
Both sums needed to perform GLRT poly-isoline. Sﬂ.llllﬂlll. EEIEEEENEER
are read from elememiz,jQ) of Is. ol EIIENNEREEN \o=- PANEEREE
Fig. 3. Example of PI-PD lengthening process starting witiwa-segment AENEEEESNNRE ‘NENIEEEEERE
poly-isoline ¢ = 5). The initial situation is represented in 3a, while 3a to 3d "2 3 4 5 6 7 8 8 101 "2 3 4 5 5 7 8 8 101
represent the successive processing steps. The end pitte &dst validated (d) Isoline directions for ran- (e) Isoline directions for ran-
segment is(i2, j2) (3a). Reference matricek and Iy, provide the values dom drawingn®1 dom drawingn°2

needed to select the pattern to be applied(@nj2) (3b and 3c). GLRT is

performed to validated lengthening or not. This processsgme until one Fig- 4. Zoom on a small square window of the airplane imageegeoduce
submitted segment does not comply with GLRT. the zoom on the window, taken from the reference image ofrBigu 4b, 4c

and 4a and are 3D views where each bar represents a pixel yhmséevel
corresponds to the height of the bar. Figures 4d and 4e areogDviews
. of the window. The chosen window shows an edge between twionggf
C. Hybrid PI-PD low slope. The images 4b and 4c are corrupted with two differandom

. . , . . rawings of the same additive white gaussian noise (AWGNpafer o2
As the determination of each segment's direction on d mean valué. 4d and 4e show, for each pixel of the window, the direction
involves a few pixels, the PI-PD model may not be robust the isoline found by PI-PD. In regions of low slope (the tvegions at
enough in regions where the surface associated @itias a the top and the potto_m), the determination of the dirgct'mndt robust. But
low local sIope value regarding power of noise. We shall near the edge, directions do not vary from one drawing tohamot
call those regions Low Slope Regions (LSR). Figure 4 shows

this lack of robustness with an example of two drawings of

additive white gaussian noise applied on the same referencgach base directiof®;) and its opposité®; + ) [27] de-
image (Figure 6). Within this image, we focused on a smalhe a line that separates the square window in two regiops (to
11x11 pixel window containing two LSR with one sharp edggnd and bottom regions, denoted T and B). We assume that
between them. o segments on the limit belong to the T region which includes
Figures 4d and 4e show that the directions computed Byels of orientation fron®, to ©, + . This region comprises
PI-PD are identical from one drawing to the other near thfree more segments of directio(®; + ), (8; + 2r) and
Ed\?v?t r(]“:ess §H7r)ég;l'v:rl1lse tct)]erys\rljaergénglcﬁls f(g)':‘be_j 1;4t’08(-:%)ir)l.p 0, + 27). The other region (B) only includes three segments
ithin su ions, ou id u racti 4 5w . 6n I
isoline directions with the PI-LD model, more robust but far d-lrectlons-(& T, (_91 K )_ an-d(@z )
too slow. Instead we propose a fast solution which implies Figure 5 illustrates th's, org.anlzatlon fe; — 6‘} - 450'_
designing an edge detector whose principle is to re-use gch bar re_presents a p|xel in the detector’s W|_ndow. Pixels
segment patterns defined in section VI and to combine theifh null height are not involved in the GLRT. Pixels repre-
by pairs in order to detect any possible LSR around the cengén't€d by higher bars define the T region and those repreisente
pixel. If a LSR is detected, the output gray-level value i@y shorter bars define the B region.
the average value computed on the current square windowfor each®;, one GLRT is performed in order to decide
otherwise, the PI-PD output value is used. whether the two regions T and B defined above are likely to
In order to further simplify computation, only the patternde seen as a single region or as two different ones, separated
that do not share any pixel are used. These patterns haveyaan edge as shown in figure 5. The center pixel is located
direction which is a multiple oft5°. on the edge. Equations (6), (7) and (8) lead to a similar GLRT



on the top noisy airplane image with a GLRT threshold value
T2.,q2 = 2. Black pixels represent pixel classified as an
edge while white ones are those which belong to LSR.

Fig. 5. Edge detector. 3D view representing an example sqliax11 pixel
window (I = 5) used in the edge detector féry; = 45° around a center pixel
colored in black. Each pixel is represented by a bar. Barigft value 0 are e A
for pixels that are not involved in the detector. Top regisrdefined by five | B S d
pattern segments and includes the center pixel. Bottomiprremnly includes o
three pattern segments. The different height values aretmeadistinguish
between each of the three different sets of pixels and tlogr r

o5

(a) Noisy airplane image (b) Pixel classification per-
formed by the edge detector.
Fig. 7. Pixel classification inside the noisy image. Figuaesfiows the noisy
input image and 7b reproduces the output classification >@lqi as a black
and white image, obtained with threshold valiie,, ., = 2. Black pixels
are supposed to be near an edge, while white pixels belongto $lope

expression: ;
P Regions.

T2mas — (814 1). [log (532) —log (5:2)} (1)

where o3 is the standard deviation considering that the twoV!l. HYBRID PI-PDFILTER IMPLEMENTATION: DETAILS
regions are likely to define a single one amdthe standard  All implementation details that will be given here are
deviation if an edge is more likely to separate the tweelative to the proposed PI-PD models and NviliaGPU
regions.72,,., is the decision threshold. With equation (11)devices.

a negative result leads to an edge detection, oriented dswar

direction ©;. When GLRT is known for eackp;, we apply A Segment patterns

the following hybridation po_hcy: ! The first kernel to be run iker nel _genPat hs() which
a) more than one negative GLRT: the PI-PD output valyganerates matrix?,. Its elements(Ai; Aj) are the relative

is used. _ o coordinates of the pixels which define segment patteins
b) only one negative GLRT: the center pixel is likely to berhe dimensions of matri¥; are D rows x I columns. To fit

on a well-defined edge, and only the region it belongs {§py architecture as closely as possible, we chbse 32

is considered. The average value of its pixel gray leveliiterns. Each segmeni of a poly-isoline can then be seen

is then used. _ _ as a patterrp, 4 applied on the starting pixefi, ;) of this
c) no negative GLRT: the window around the center p'x%legment denoteg 4(i, ).

is likely to be a LSR. The average value on the whole The example in figure 8 shows the first quarterRfand
square window is used (11x11 pixels in the example @fie corresponding eight discrete segment patterns in thie fir

Figure 5). quadrant. The three remaining quarters of the matrix arigyeas
) deduced by applying successive rotations of arnfléo the
P — above elements.

B. Generation of reference matricds and Ig

In order to generate both matrices, a GPU kernel
kernel preconp() computes, in parallel for each pixel
(i,7):

« the directiond of the most likely segment; = p; 5(i, 5)

==
N ‘t\ e among theD possible ones. This value is stored in matrix

(@) Reference noiselesé air- (b) Location of the example Io at position(z‘ j)

plane image window in the reference image. © iy . . .
- o of th e window inside the ref o « valuesC,(s1) andC,2(s1) defined in equations (9) and
Fig. 6. Location of the example window inside the referemoage. Figure ; ; ;
6a shows the whole reference image and 6b zooms on the pare e (10),'_ Th|§ YECtor of values is stored in matr: at
example 11x11 pixel window is. position (7, j).

In order to reduce processing time, the input image is first

It must be noticed that point b) has been introduced in ordewpied into texture memory (see algorithm 1 for initialinas
to achieve smoother transitions between regions to whieh Rhd memory transfer details), thus taking advantage of the 2
PD is applied and those in which the plain average valugptimized caching mechanism.
is used. Figure 7 shows an example of such a classificatioriThis kernel follows theone thread per pixetule. Conse-
achieved by the edge detector. The detector has been apptjedntly, each value oF, has to be accessed by every thread
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Algorithm 2: generation of reference matrices, kernel
kernel _preconp()

D54 P55 D56 P57
T o ?E:: ? 3
] ] ] :
[ [ [ [ 4
r (0, 1) (0,2) (0, 3) (0, 4) (0, 5) 7
(0,1) (0, 2) (=1,3) (—=1,4) (—1,5) 5:
(0, 1) (-1,2)  (—=1,3) (—=2,4) (-2,5) 6:
(—1,1) (—1,2) (—2,3) (—3,4) (—3,5) '
Py = | (=11 (=2,2) (=33 (-4,4) (-5,5)
(=1,1)  (=2,1) (=8,2) (—-4,3) (-5,3) 7:
(-1,0)  (=2,1) (=3,1) (—4,2) (=5,2) ’
(=1,0) (=2,0) (=3,1) (—4,1) (—=5,1)

Fig. 8. Top: example segment pattenms for d € [0; 7]; the black pixel 10:
represents the center pix@, j), which does not belong to the pattern. ThiL:
gray ones define the actual pattern segments. Bottom: the8fites of 12:
corresponding matri¥’s whose elements are the positions of segment pixtﬂ;
with respect to the center pixel. '

14:

15:
of a block. That led us to load it from texture memory firsg:

s = T 1. foreach pixel (i, j) do
inintn iﬂg 2| Copest = )

[+ in parallel =/
Lntex (i +y,j + 1) 5
(y,x)€p1,0(1.5)
Cazbest & > D (i+yj+a);

(y,x)€p1,0(%,7)
opest < Standard deviation along (4, j) ;

/+* | oop on each pattern */
foreachd € [1; D — 1] do
Cm — Z Intem(i + yaj + x)!

(y,z)€p1,a(i,5)
Z Iztem(i"’—yaj'i_x);
(y,x)€p1,a(i,5)
o + standard deviation along 4(4, j);
if g < opest then [+ keep the best x/
C1szesti — Cz ;
0127best — 012 ;

CIQ —

®best —d ;
end
end
Ig(i,j) — [szbest, Cx27best] , /= stores =/
Io(i, j) < Obest ; [+ in matrices */

then copy it into all shared memory blocks. This has proved end

t

ker nel _preconp() . Vector(C,, C,2) stores the values of

0 be the fastest scheme.

Algorithm 2 summarizes the computations achieved by

Lines from 2 to 11 perform allocations for the first lengthen-

Ca(s1) andC;2(s1) associated with the current tested patterizg to evaluate. More preciselfiy, j,) represents the starting
Vector (Cy—pest, Coa—best) Stores the values of’z(s1) and  pixel of the current segmentis, j») is both its ending pixel
C,2(s1) associated with the best previously tested pattern. gng the starting pixel of the next segmedit;andd, are their
In the same mannes and oy, are deviation values for girections, read from precomputed matdy. C! and C1,
current and best tested patterns.

The selection of the best pattern is driven by the value ef2, are the gray-level sums of the candidate segment. The
the standard deviation of candidate isolines. Lines 2 andcgrrent poly-isoline ends at1, j1) and is made of; pixels
compute bot_h sums for the firs_t pattern to be evaluated. Lip@ready accepted segments); its standard deviation.ighe
4 computes its standard deviation. Then, lines 5 to 14 loop igpp extending from lines 12 to 21 performs the allocations
each pattern and keep values associated with the bestrpatiRieded to proceed one segment forward, as long as GLRT is

found. These values are eventually stored in matrigeand

Is, on lines 16 and 17.

Algorithm 1: Initializations in GPU memory

. | + step size;

- D < number of primary directions;

I, + noisy image;

Lntew — I [+ copy to texture mem =*/
P, « kernelgenPaths ; /* pattern matrix */
Ppey < By, /* copy to texture mem =/
Taz < GLRT threshold (lengthening);

T2maz < GLRT threshold (edge detection);

C. PI-PD lengthening processer nel _Pl PD()

This parallel kernel is run in order to obtain the image ofalues of the direction indexg(), the number of edges detected
theisolines It is detailed in algorithm 3, (see section VI-B for(edgeCount), the gray-level sum along the pixels that defines
process description).

are the gray-level sums along the current poly-isolifig;and

true. If the lengthening has been accepted, the length of the
poly-isoline is updated in line 13, and the same is done with
C, andC,, which are read from precomputed matrix (see
equations (9) and (10) for definition). Finally, using diien
valueda, it translates the coordinatég , j;) to the end of the
newly elongated poly-isoline, anf@-, j») to the end of the
next segment to be tested. As soon as the GLRT condition
becomes false, line 23 eventually produces the output value
of the denoised image at pixél, j), that is, the average gray-
level value along the poly-isoline.

D. Hybrid PI-PD : ker nel _edge_det ect or ()

As introduced in section VI-C, the aim of kernel
kernel _edge_detector () is to divide pixels into two
classes according to their belonging to a LSR or not. Algo-
rithm 4 explains the detailled procedure. Lines 2 to 6 itit&a

the H half-plane {umFEdge) and the number of pixels that



Algorithm 3: PI-PD lengthening process Algorithm 4: edge detector and pixel classifier
kernel _PI PIX) kernel _edge_det ector ()
1. foreach pixel (i, 7) do [+ in parallel =/ 1. foreach pixel (¢, 7) do /= in parallel =/
2 (CL,CL) « 2(i,5); I+ starting pixel =/ 22 | ©+«0; I+ direction index */
3 (i1,J1) < (4,7) ; I+ first segnent =/ 3 edgeCount + 0;
4 (CL,CL) « Is(i1,51); [+ read matrix =/ 4 sumEdge + 0;
5: dy < Io(i,7) ; [+ read matrix */ 5 nH < 5l +1,
6 lh+1; /+ isoline length =/ 6: nL < 31,
7 g1 < (0;2/11 — C;)/ll, 7 while (@ < 32) do
8 (i2,j2) < end of first segment; 8: sumH < (Intes (4,7), 12100 (i, 7));
o: (C2?,02) < Is(iz,j2) ; I+ 27 segment =/ o sumL + (0,0);
10: dy + Ig(ia, j2); 10: for (¢ = O to a = © 4 16 by step4) do
1 o2 (C2/l—=C2)/1; 11: sPat + Z Lotex (i +y,J + 2);
12: Whl|le GLZRT(lo—l,ch,ll,l) </Tmalm dot o / (©,2) € Proo(i27)
13: 1l +1; * | engt heni ng * 12: SPat2 12 (it ita):
w || (OLCly) ¢ (01,01 + (02 Chy); 2 it
- — (Cly/li—CH/L ;s Ix update */ e
15: g1+ ( IQ/, 1= Y /s P 13: sumH <+ sumH + (sPat, sPat2);
16: (i1, 1) <— (i, jo) ; [+ step forward */ 14 end
17 Ei_l <—_§l2’ Lof neat . 15: for (¢ = © + 20 to a = O© + 28 by step4) do
18: 12,72) < end of next segment,; ' . . .
/* next segment */ 16: sPat<—( )XP: . .)Intez(l‘Fya.]‘i‘I);
(C2,C2)  Is(ia, ja2); REE . .
1o: dy I (iz, jo); 17: sPat2 + Z Igtem(z +y,j+x);
20: o9+ (C% /1 - C2) /1 ; (,2) P, a(1,7)
01 end 18: sumlL < sumL + (sPat, sPat2);
22: end 19: ?nd
s T(1.4) < CI/1 /+ isoline value o/ ® | | I GLRT(sumilntsunkinl) > T2
21: edgeCount < edgeCount + 1,
22: sumFEdge + sumH.x;
defines both half-planes H and &, nL). Then the loop 2 end
starting at line 7 performs the GLRT for every considerét 0 < O+4
direction index®. ValuessumH and sumL are vectors of 25 | €nd _ _
two parameters: andy, parameter: being the sum of gray- /+ outputs isoline value */
level values and; the sum of square gray-level values. Valge | if (edgeCount == 0) then
sumH is computed along the pixels of half-plane H and js 16, ) « (sumH.z + suml.z) /% LSR */
obtained by loop at lines 10 to 14; ValsemL is computed q nH +nlL
along the pixels of half-plane L and is obtained by loop 25; ?n doeCount —— 1) th
lines 15 to 19. Valud,.., (i, j) refers to the gray-level value at> | ' (edgeCount == 1) then
s . ‘ ~ (sumEdge)
pixel (i,j) previously stored in texture memory. Eventyathe so: I(i,j) «+ ——=
isoline level value is output at line 27, 30 or 33 depending gn | ong nH
the situation (see VI-C for details about the decision psege,,. if (edgeCount > 1) then
33 | 1(i.5) + Ip1pp (i, 5); /% Pl-PD */
34: end
VIIl. RESULTS 35 end

The proposed hybrid PI-PD model has been evaluated with
the 512x512 pixel sample images used by [12] in order to
make relevant comparisons with other filtering technigées.
we aim to address image processing in very noisy conditions
(as in [15]), we focused on the noisiest versions, degraged b
AWGN of standard deviatiogr = 25.

Quality measurements of the denoised images in com-

~

images:M SE(I,I). We used the following expression:

PSNR = 10.1ogy | D) _
MSE(I,])

© . . ) PSNR values are given in dB and highest values mean
parison with reference images have been obtained by the best PSNR
evaluation of: b) The Mean Structure Similarity Index (MSSIM, defined

a) Peak Signal to Noise Ratio (PSNR) that quantifies in [16]), which quantifies local similarities between

the mean square error between denoised and reference denoised and reference images inside a sliding window.



Image Noisy | average hybrid BM3D

MSSIM values belong to an intervél; 1]; the closer to 55 | PI-PD
1 the better. aiplane | 19.4908 | 26,3008 | 28.46d8 | 30.580B
o ) ) 0.58 0.84 0.88 0.93
PSNR is widely used to measure image quality but can be barbara | 20.04dB | 22.76dB | 24.26dB | 30.60dB
misleading when used by itself: as demonstrated in [16], the 0.70 0.76 0.83 0.94
processing of noisy images can bring a high PSNR value but boat 20-30322 25-503‘8“5’ 27-504‘8’$ 30-0023‘5’
very bad visual quality. This is avoided by the use of the couple | 202808 | 25.25d8 | 27.33dB | 29.77dB
MSSIM index along with the PSNR value: when both of them 0.69 0.79 0.87 0.91
show high values, the overall quality can be considered.high elaine 19-805gg 28-70132 28-90435 30-6008?
Result figure 9 provides the PSNR and MSSIM of every fingerprint | 20.34d8 | 23.33dB | 26.07d8 | 27.93d8
image, denoised with three different filters: average 5x5, _ 0.93 0.87 0.95 0.96
hybrid PI-PD and BM3D. Thaoisycolumn shows the values goldhill 19'50923 26'40732 27'40333 29'20235
for each image before denoising. BM3D ( [7]) is taken as lena 1992d8 | 27.99d8 | 29.14dB | 31.80dB
a reference in terms of denoising quality, while the average 0.60 0.84 0.88 0.93

tar i i inq i man 20.380B | 24.74dB | 26.74dB | 28.14dB
filter is taken as a reference in terms of processing time. The 0.71 0.80 0.86 .87

window size of 5x5 pixels has been choosen to achieve PSNR mandril 1 1934dB | 20.34dB | 22.38dB | 247508

values similar to those obtained by PI-PD. 0.77 0.69 0.83 0.88

BM3D code is run on a quad-core Xeon E31245 at 3.3GHz peppers 19'5032? 27'30932 28'%?3? 30'807_82
and 8GByte RAM under linux kernel 3.2 (64bits), while PI- stream | 20.350B | 23.23dB | 25.350B | 26.340B
PD as well as average filter codes is run on a Nvidia C2070 0.80 0.78 0.87 0.88
GPU hosted by a PC running linux kernel 2.6.18 (64bits). The zelda 17‘701'35 23‘103'33 27‘701'35 30‘40?32

average filter used is an efficient parallel GPU implemeaorati
that we developped. It is a generic and versatile separabig 9. Comparison between hybrid PI-PD, average and BM3&rsil PI-PD
convolution kernel that outputs more than 700MPixels p@prameter valuesy = 25,1 = 5, Tmas = 1 andT2mas = 2. The noisy

. . . . column correspond to the noisy input images, before demmisi
second in the 5x5 averaging Conflguratlon' Timings: average filter in around 0.35 ms hybrid PI-PD in ad1.0 ms

Hybrid PI-PD measurements were performed with- 25, and BM3D in around 4.3 s
I =5, Thhae = 1 and 12,4, = 2. BM3D measurements
have been performed with the freely available BM3D software
proposed in [7].

The hybrid PI-PD model proves much faster than BM3D
and better than the average 5x5 filter. Processing the ¢hirte Rty
images of the database reveals that hybrid PI-PD brings an i
average improvement of 1.5dB (PSNR) and 7.2% (MSSIM) ”
against the average filter at the cost of 35 times its compu- ) Noisy imager = 25 (b) Average 5x5 filter, in
tational duration. Against hybrid PI-PD, BM3D achieves an 0.35 ms
average improvement of 2.4dB and 4.6% at the cost of 350
times as much duration. Actually, the 5x5 average filter sake

around0.35 msto process an image while hybrid PI-PD needs %
around11l msand BM3D aroun®.3 s K

It must be noticed that experimental optimization show that & £
the vector of parameter valués,,., = 1 and72,,,. = 2 ‘ PR — PR
is optimal for 11 of the 13 images of the database. Better o I

. . . . (c) PI-PD hybrid filter,n = (d) BM3D filter, in 4.3s

results are obtained with a slightly different value 2,4, 2%. 1 = 5 Toas = 1,
for peppersor zelda whose denoised images can obtain @ 72ma: =2, in 11 ms
MSSIM index of 0.90. Most of the computational time 0fig. 10. Comparison of 512x512 images denoised from noigyeaie image
hybrid PI-PD is spent by the edge detector, which clearlysdoé0a) with a PI-PD filter (10b), PI-PD hybrid filter (10c) anavBD filter
not fit GPU requirements to achieve good performance. FgPd)- Only zoomed parts of images are shown in order to enbetter
information, the simple PI-PD model runs in less than 4 ms
in the same conditions.

b

Figure 10 shows denoised images produced by hybrid PI-PD IX. CONCLUSION, FUTURE WORK
model compared with the output of the BM3D and the average
5x5 filters. The figure illustrates the merits and drawbadks o From the start, our approach, unlike quite a few others, has
each model: edges are well preserved by hybrid PI-PD, bubaen to base this study on the conception and charactsristic
staircaseeffect is visible, a well-known artefact inherent to thi©f the targeted hardware (Nvidia Graphic cards).
type of neighborhood filters. Our recent GPU-implementatio So as to get high execution speeds, we chose, for example,
of the regression method proposed in [17] brings a me#m find a method that remains local (concentrating on the
improvement of 1dB at the cost of 0.4 ms. immediate neighborhood of the center pixel), but still pdes
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very significant benefits, using our technique of progre&ssiyL2] DenoiseLab Philosophy: A Standard Test Set and Evaluatiethddl to
Iengthening. Compare Denoising Algorithm®©ct. 2007.
. .n{lf] A. Buades, B. Coll, and J. Morel, “A review of image desiog
Nevertheless, our method has proved Sl'ghtly SUb'Opt' a algorithms, with a new oneMultiscale Modeling and Simulatiorol. 4,
and lacking robustness iilat regions (see above, Low Slope  no. 2, pp. 490-530, 2005.

Regions), even if the actual visual effect may be considergd! gc\)"g'A CUDA C Programming Guide v3.1.NVIDIA Corporation, 7
’ 1

[ i : . érrot, . Domas, R. Couturier, and N. Bertaux, “Gpplementation
quite satl_sfactory [15] G.P S D R.C dN.B appl
As a first step to address the above drawbacks, we have of aregion based algorithm for large images segmentatior€omputer

; ; ; ot and Information Technology (CIT), 2011 IEEE 11th Interoatl Con-
devised a hybrid method that detects and applies distinct ference on31 2011-sept. 2 2011, pp. 291 298,

processing to LSR regions (see above). Processing Speggisz. wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simefiicand
remain fast, and much higher than the BM3D implementation S. Member, “Image quality assessment: From error visjhititstructural
taken as quality reference. This is very promising, and spen ZE"azrgl& IEEE Transactions on Image Processingl. 13, pp. 600-
the perspective of real-time high definition image sequengg; a. Buades, B. Coll, and J.-M. Morel, “The staircasindeet in neighbor-

processing at 25 fps, provided we improve the edge detector, hood filters and its solutionJEEE Transactions on Image Processing
which currently limits the HD frame rate at 16fps (High VO 15 no. 6, pp. 1499-1505, 2006.
Definition: 1920x1080 pixels).
To further improve the quality of output images, we also im-
plemented a efficient parallel implementation of the steec
effect reduction technique presented in [17]. With thistmoel
searching for best improvement factors leads to different
parameters values for each image processed, which prompts
to studying some way of overriding such parameters.
Our study so far has been based on additive noise; we are
currently working on transposing criteria to various npllta-
tive noise types. We also extended the process to color isnage
with very interesting visual results to be confirmed by the
experimental measurement currently in progress.
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